Useful Data

Metric Prefixes

M-	mega-	10 ⁶
k-	kilo-	10 ³
m-	milli-	10^{-3}
μ- (Greek mu)	micro-	10^{-6}
n-	nano-	10^{-9}
p-	pico-	10^{-12}
f-	femto-	10-15

(Centi-, 10^{-2} , is used only in the centimeter.)

Notation and Units

quantity	unit	symbol
distance	meter, m	$x, \Delta x$
time	second, s	$t, \Delta t$
mass	kilogram, kg	m
density	kg/m ³	ρ
velocity	m/s	v
acceleration	m/s ²	а
force	$N = kg \cdot m/s^2$	F
pressure	Pa=1 N/m ²	P
energy	$J = kg \cdot m^2/s^2$	\boldsymbol{E}
power	W = 1 J/s	P
momentum	kg·m/s	P
period	8	T
wavelength	m	λ
frequency	s^{-1} or Hz	f
charge	coulomb, C	q
voltage	volt, $1 V = 1 J/C$	V
current	ampere, $1 A = 1 C/s$	I
resistance	ohm, $1 \Omega = 1 \text{ V/A}$	R
capacitance	farad, $1 F = 1 C/V$	C
inductance	henry, $1 \text{ H} = 1 \text{ V} \cdot \text{s/A}$	L
electric field	V/m or N/C	\boldsymbol{E}
magnetic field		В

Fundamental Constants

gravitational constant	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Coulomb constant	$k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
quantum of charge	$e = 1.60 \times 10^{-19} \text{ C}$
speed of light	$c = 3.00 \times 10^8 \text{ m/s}$

Conversions

Nonmetric units in terms of metric ones:

1 inch	= 25.4 mm (by definition)
1 pound-force	= 4.5 newtons of force
$(1 \text{ kg}) \cdot g$	= 2.2 pounds-force
1 scientific calorie	= 4.18 J
1 kcal	$=4.18\times10^3\ \mathrm{J}$
1 gallon	$= 3.78 \times 10^3 \text{ cm}^3$
1 horsepower	= 746 W

When speaking of food energy, the word "Calorie" is used to mean 1 kcal, i.e., 1000 calories. In writing, the capital C may be used to indicate 1 Calorie=1000 calories.

Relationships among U.S. units:

1 foot (ft)	= 12 inches
1 yard (yd)	= 3 feet
1 mile (mi)	= 5280 feet

Earth, Moon, and Sun

body	mass (kg)	radius (km)	radius of orbit (km)
earth	5.97×10^{24}	6.4×10^{3}	1.49×10^{8}
moon	7.35×10^{22}	1.7×10^{3}	3.84×10^{5}
sun	1.99×10^{30}	7.0×10^{5}	

Subatomic Particles

particle	mass (kg)	radius (fm)
electron	9.109×10^{-31}	≲ 0.01
proton	1.673×10^{-27}	~ 1.1
neutron	1.675×10^{-27}	~ 1.1

The radii of protons and neutrons can only be given approximately, since they have fuzzy surfaces. For comparison, a typical atom is about a million fm in radius.